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INTRODUCTION

The Ada Programming Language (United States Department of Defense, 1983) was
designed to meet the need for a standard computer-programming language. Ada has the
ability to take advantage of multiprocessor environments. One feature, known as the
rendezvous, allows tasks to synchronize. This very important and powerful feature is
poorly understood. Rendezvous performance is a known area of concern, especially if the
system is in a multiprocessor environment. In this paper, analytic techniques are
developed that will predict the performance of systems using the rendezvous.

In a distributed Ada system, the rendezvous provides synchronized communication
between asynchronous tasks. A system of this sort would consist of at least two
processors, each serving various tasks. We have analytically developed algorithms that
determine the average Rendezvous Response Time for a two-processor system. Rendez-
vous Response Time will be defined as the amount of time one task (i.e., a client task)
must wait until its rendezvous request to another task (i.e., a server task) is completed.
This approach uses Mean Value Analysis (MVA), analytic extensions to MVA, and
elementary queueing theory to decompose the rendezvous into interacting separate
models. The notion of a software server that maintains a queue and services rendezvous
requests will play an important part in the solution techniques.

This paper is divided into three parts. First, an open model to a two-processor system
is analyzed. Second, a closed model to a two-processor system is analyzed. Third, more
complicated client-server rendezvous situations and possible analytic solutions are pro-
posed. The solutions are based on the simpler client-server model of this paper. The
testing of their validity will be for future work on this project.

BACKGROUND

THE ADA ENTRY CALL

Ada tasks are asynchronous processes that can execute concurrently with one another
on a multiprocessor system. The feature used for task communications and synchroniza-
tion is the rendezvous.

A task makes a request for rendezvous by calling an entry to another task. When the
called task (i.e., the server task) is ready to perform an accept, the rendezvous begins. If
the server task is not ready to accept the rendezvous request, the calling task (i.e., the
client task) is blocked from executing further on its processor. At this point, the client
task releases the processor on which it is running and remains in a blocked state until its
rendezvous is completed.



Figure 1 is an illustration of the states of execution of a client task. A state transition
exists from running (the task is executing on the processor and the rendezvous request is
made) to blocked (the task is suspended from execution and waits for the server task to
perform the rendezvous). When the server task accepts and completes the execution of
the rendezvous, the client task becomes ready (the task is waiting to regain access to the
processor).

BLOCKED

RUNNING READY

Figure 1. The states of execution of a client task on a
multiprocessor system.

CHARACTERISTICS OF THE RENDEZVOUS

The rendezvous (1) represents the meeting of two tasks at the point of synchronization
and (2) may communicate data. If several tasks make a call to the same entry, a queue
forms and the server task will rendezvous with each client task on a first-come,
first-served basis. As each rendezvous is completed, the client and server tasks continue
their execution concurrently.

The following two Ada tasks running on a two-processor system are presented as our
problem statement. The first task, SERVERTASK, runs on one processor and contains
only one "accept" statement. This task will make no rendezvous requests to other tasks:

task body SERVER-TASK is
begin
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accept DataExchange (...) do .

end DataExchange; ;-:*:Af,, 1. , .

end SERVERTASK. ovt

The second task, CLIENTTASK, runs on the other processor and contains a call to
the "DataExchange" entry of SERVERTASK:

task body CLIENT-TASK is
begin

SERVERTASK.DataExchange(..

end CLIENTTASK.

CLIENTTASK makes a call to the entry of SERVERTASK and is blocked from
further execution until SERVERTASK completes this rendezvous. After the rendezvous
is completed, CLIENTTASK is put into a ready state. Both tasks now go their separate
way a-id execute in parallel.

We define Rendezvous Response Time for CLIENTTASK as follows. Let DELAY
TIME be the length of time that a task spends in the rendezvous entry queue. This time
begins when CLIENTTASK makes a call to the entry of SERVERTASK and ends when
SERVER_TASK accepts this call for rendezvous. This period includes any delays due to
any other tasks that have previously made the same call to entry "DataExchange" and
are still waiting for rendezvous. Define RENDEZVOUS TIME as the length of time that
begins when CLIENTTASK is accepted for rendezvous and ends when the "end
DataExchange;" line of SERVERTASK is executed. Thus, define

Rendezvous Response Time = DELAY TIME + RENDEZVOUS TIME.

From figure 1, Rendezvous Response Time is equivalent to having CLIENT-TASK go
from "Running" to "Blocked" to "Ready."

ANALYSIS FOR THE OPEN MODEL

An algorithm is presented for determining the average Rendezvous Response Time for
the following open model to a two-processor system. Hereon, the word "average" will be
assumed when appropriate.
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STATEMENT OF THE PROBLEM

Consider the open model for a two-processor system as drawn in figure 2. Task
SERVERTASK will execute exclusively on one processor that will be called Server
Processor. SERVER-TASK will have the following form.

task body SERVERTASK is
begin

loop
accept Data-Exchange (...) do

end DataExchange;
end loop;

end SERVERTASK.

Traffic Tasks _ _

Server Processor

0
SERVER-TASK Delay Server

Traffic Tasks ---- I_

Client Tasks

Client Processor

0 -
Rendezvous Delay Server

Figure 2. The open model to the two-processor system.

SERVERTASK will execute as a reentrant task, serving one rendezvous request each
time it gains access to the processor. Also, other tasks will arrive at Server Processor at
some average rate and will provide contention with SERVERTASK for processor re-
sources. These tasks play no role in the rendezvous itself and will be called the "traffic
tasks" of Server Processor. Each of these tasks will require only a finite amount of service
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time before exiting the entire model. SERVERTASK will enter and remain in the
SERVERTASK delay server whenever there are no rendezvous requests to service.

At the second processor, other tasks will arrive at some given rate. These tasks will
make rendezvous requests to SERVERTASK. Thus, we will refer to these tasks as "client
tasks" and this processor as Client Processor. In this case, client tasks will have the form
of CLIENTTASK as defined below.

task body CLIENTTASK is
begin

SERVERTASK.DataExchange (..

end CLIENTTASK.

A client task arrives at Client Processor and enters the processor queue. When the
client task is selected for service, it makes a rendezvous request with SERVERTASK and
is put in a "blocked" state. The client task next enters the rendezvous delay server. At this
point, the Client Processor is assigned to another task in the queue. Client tasks that enter
into the rendezvous delay server will remain there until their rendezvous request is
completed by the SERVERTASK. Also at Client Processor, tasks that have nothing to do
with the rendezvous arrive for service. These are referred to as the "traffic tasks" of
Client Processor.

Assuming the forced-flow law applies here, the rate at which client tasks arrive at
Client Processor is equal to the rate client tasks make rendezvous requests to
SERVERTASK. At Server Processor, SERVERTASK rendezvous with each request one
at a time on a first-come, first-served basis. When the rendezvous request is completed,
the client task is released from the "blocked" state and reenters the queue at Client
Processor for further execution.

There are two observations to make on the definition of the Rendezvous Response
Time: (1) Rendezvous Response Time is unaffected by the processor time needed by the
client tasks at Client Processor, and (2) is unaffected by the processor time needed by the
"traffic tasks" arriving at Client Processor. Thus, it is not necessary to consider the
service demands for the client tasks and the traffic tasks at Client Processor. We reason
that analysis to Rendezvous Response Time will only require looking at the activities at
Server Processor. Knowledge of the arrival rate of the rendezvous requests to
SERVERTASK, the service demands of SERVERTASK and the traffic tasks at Server
Processor, and the arrival rate of the traffic tasks to Server Processor are all that are
needed.

Mean Value Analysis (MVA), analytic extensions to MVA, and elementary queueing
theory were used to develop an algorithm for calculating the Rendezvous Response Time
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for the the client tasks of Client Processor. Before presenting this algorithm, its input and
output data will be formally introduced.

INPUT AND OUTPUT DATA FOR THE ALGORITHM

The input data are 2 H, 2 R, DH, and DR. They are defined as follows:

1. The traffic tasks arriving at Server Processor is a Poisson process with parame-
ter AH.

2. The client tasks arriving at Client Processor is a Poisson process with parameter

AR. Thus, the rendezvous requests made to SERVERTASK is also a Poisson
process with the same parameter.

3. The service demand at Server Processor for a traffic task is exponentially dis-
tributed with average service demand DH.

4. The servic,: demand at Server Processor for SERVERTASK (i.e., RENDEZ-
VOUS TIME between SERVERTASK and one client task) is exponentially
distributed with average service demand DR.

Using these input values, we determined Rendezvous Response Time for the client
tasks of Client Processor.

MODEL ANALYSIS AND ALGORITHM DERIVATION

An analysis of the problem using the conventional queueing approaches is difficult
because it violates several device homogeneity assumptions. The assumptions assert that a
customer must not be present (waiting for or consuming service) at more than one
resource at the same time. Also, the ability of a resource to render service must be
independent of another resource. In other words, customers and resources must be
independent of each other. Neither of these assumptions are true for our problem if we
view SERVERTASK as a resource providing a rendezvous for the client tasks of Client
Processor. When a client task makes its rendezvous request, the clieat task enters another
queue, namely, the entry queue of SERVER TASK. Thus, this client task is present at two
resources. In addition, Client Processor must suspend service to the client task until the
rendezvous request of the client task is completed. Thus, Client Processor is a resource
dependent on SERVERTASK.

Our approach was to use MVA to develop an algorithm that will ease these
homogeneity assumptions. The idea is to view SERVERTASK as a "shadow" or
"software" server that maintains a queue of rendezvous requests and provides service to
each request. SERVERTASK, which must contend with intervening traffic, can only
provide rendezvous services when it gains access to Server Processor. Thus, the service
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rate of the software server will be adjusted to reflect this contention. (In Ada 9X, these
servers will be used to manage rendezvous priorities.) References to shadow servers can
be found in Jacobson and Lazowska (1982), Woodside et al. (1986), and Agrawal and
Buzen (1983). The approach will be based on the Jacobson-Lazowska method for solving
simultaneous resource possession.

The first-order approximation to the open model is as follows:

Server Processor will be looked at as a queueing center consisting of two parallel
service facilities. One facility will act as the SERVERTASK software server and process
the set of rendezvous requests from the client tasks. The other facility will process the set
of traffic tasks (figure 3). The residence time of the rendezvous requests class will be
used to predict Rendezvous Response Time of our original open model. Keep in mind that
in the original queueing network of figure 2, SERVERTASK can complete only one
rendezvous at a time. Thus, the rate that the rendezvous requests are processed at the
software server of figure 3 must reflect the processing demands provided by the traffic
tasks at its facility. A technique called "load concealment" was used to hide the processor
demands required by the traffic tasks from the rendezvous requests

Rendezvous Requests

Traffic Tasks 
:XX

Figure 3. Server Processor separated into a queueing
center consisting of two parallel service facilities.

Figure 3 can be easily solved as a simple two-stage Erlangian server (Kleinrock, 1975)
with the residence time of the rendezvous requests class used to predict Rendezvous
Response Time. First, the effects on the software server due to traffic tasks processor
demands must be taken into account. To do this, we "inflated" the service demands of the
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rendezvous requests class in figure 3. Thus, the processor utility used by the traffic tasks
class are concealed from the rendezvous requests class.

The algorithm follows:

1. Define

OtR = ),R1/( R + AH)

0i H = H/ (11R + Ag)•

2. "Inflate" the value DR as

DR' = DR/(1 - HDH)•

3. Set

x =oR * DR+ on* DH
y=2'2

y =2 * (OeR* D2 +CIH * DH2)

K = (y - x2)/x 2 ,

and determine the total utility of the queueing center using the original service demands,

P = (AR +;AH) * (kR * DR+OH* DH.

4. Thus, the residence time of the rendezvous requests class of figure 3 is

px(1 +K)2 (1 -p)

This value will be Rendezvous Response Time.

COMPUTER SIMULATION AND ALGORITHM RESULTS

The algorithm was compared for accuracy to the two different independent computer
simulations of our open model. Because output data from both simulations agreed with
each other, we are confident of the correctness of the simulation results.

Table 1 is a table of algorithm predictions along with a comparison to simulation runs.
For these tests, UH = ,ZH * DH and UR = 2 R * DR was defined as the rendezvous requests
and traffic tasks utilizations respectively, and fixed at DH = DR = 10 and ZR = 1/50 with
varied AH. Thus, UR is fixed at 20%. Figures 4 and 5 are relevant graphs from the table.
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Table 1. Rendezvous Response Time results with DH = DR = 10
andAR = 1/50. UR is fixed at 20% and AH is varied to obtain
UH.

UH (%) Analysis Simulation Relative Error (%)

5 5.26 5.18 1.52

10 5.58 5.57 0.18

20 6.44 6.30 2.17

40 10.18 8.94 12.18

60 26.55 20.07 24.41

301

E Simulation, o
1.- 20-

(DCO Analysis +

0

Cr

W 10-

UR = 20%

I I

0 20 40 60 80

UH (%)

Figure 4. A graph comparison of results from table 1.
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10- =R 2%

0 20 40 60 80

Figure 5. A graph of relative errors from table 1.

Table 2 was obtained in the same manner, but with DH = 2, DR =4 and AR =1/20.
Figures 6 and 7 are relevant graphs from this table.

Table 2. Rendezvous Response Time results with DH = 2, DR = 4,
and AR = 1150. UR is fixed at 20% and tH iS varied to obtain
OH.

UH N% Analysis Simulation Relative Error (01)

5 13.48 13.48 0

10 14.61 14.68 0.48

20 17.59 V7.53 0.34

40 29.55 28.86 2.34

60 77.27 83.18 7.65
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Figure 6. A graph comparison of results from table 2.
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Figure 7. A graph of relative errors from table 2.
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DISCUSSION OF RESULTS

Examination of the simulation data has shown that Rendezvous Response Time will
increase at a slow rate until it reaches some value for UH, at which point, an "elbowing"
effect appears (figures 4 and 6). Before the elbow appears, the analysis is a good
prediction to the simulated data. After the appearance of the elbow, our relative error

between analysis and simulation grows. The rate that this relative error increases is a
function of the input values. At this time, we are unsure of the exact nature of this
dependence.

The simulation data were compared with the algorithm using no inflation techniques.
These comparisons resulted in a very small relative error for data lying to the left of the
elbow of the simulation. To the right of the elbow, the simulation curve increased to
infinity at a faster rate than this new analytic curve. This "noninflated" algorithm actually
solves figure 3 as a two-stage Erlangian server. Thus, there is a region in the total
utilization of the Server Processor within which the Server Processor basically serves both

its traffic tasks and the SERVERTASK as though the traffic tasks and rendezvous
requests were arriving directly at its queue for service. In this region, the effects of the
rendezvous are not felt by the client tasks.

The original algorithm can be used to predict the location of the simulation curve
elbow. Such information could be used for bounding the arrival rates of customers to a

system. A consequence of ignoring these bounds would be an explosion in response time
for systems using the rendezvous.

ANALYSIS FOR THE CLOSED MODEL

A closed model represents a system in which a task queues and receives service at the
device then returns to wait in a delay server for some period of time. The time a task
spends in a delay server is called "think time" because the delay server represents the
amount of time a user of the system thinks before sending the task back into the system.
Figure 8 is an example of a closed system.

The delay server will be used in the closed model to account for the idle time of
SERVERTASK, i.e., the time when there are no rendezvous requests arriving for
SERVERTASK.

STATEMENT OF PROBLEM

An algorithm will be developed to determine Rendezvous Response Time for the
following closed model to a two-processor system. Figure 9 is our closed two-processor
model.
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0
Delay Server

Device

Figure 8. An example of a closed model.

00 Traffic Tasks
Delay Server

Traffic Tasks
Delay Server

Client Tasks

0 Delay Server

SERVER TASK
Delay Server

Client Processor

Server Processor
Rendezvous
Delay Server

Figure 9. The closed two-processor model.
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At Server Processor submodel, traffic tasks and the SERVERTASK queue for
processing time. Define NTraffic Task, Server Processor as the number of traffic tasks at Server
Processor. The think time (time spent in the delay server) for each traffic task will be
ZTraffic Task, Server Processor. A traffic task originates from the delay server and enters the
queue to Server Processor. After service at Server Processor, the traffic task will return to
its delay server. SERVERTASK is either in queue to Server Processor, executing on
Server Processor, or in its delay server waiting for a client task to make a rendezvous
request.

At the Client Processor submodel, both its traffic tasks and client tasks will queue for
processing time. The number of traffic tasks at Client Processor is NTraffic Task.

Client Processor and their think time is ZTraffic Task, Client Processor. The number of client tasks
is Ncient Task with think time ZClient Task . Once a client task makes a rendezvous request, it
enters the rendezvous delay server and waits there until the request is completed. The
amount of time spent in this delay server is Rendezvous Response Time.

An algorithm for determining Rendezvous Response Time for the client tasks will be
developed.

INTRODUCTION OF SERVICE PHASES

In discussing closed models, it is useful to bring up the idea of service phases. The
phase concept wili improve the model's accuracy as it relates to an actual system. The
phases of our model are defined as follows.

SERVERTASK will have three service phases. The first phase is the service demand
required by SERVERTASK before accepting a rendezvous request. The second phase is
the amount of time needed by SERVERTASK to complete one rendezvous. This is
RENDEZVOUS TIME as defined earlier. The final phase is the final service demand
required by SERVERTASK before it either requeues at Server Processor for the next
rendezvous or returns to its delay server. Note that as the second phase ends and the third
phase begins, the client task in rendezvous is released from its "blocked" state and is
ready for further execution at its processor.

The client tasks will each have two service phases. The first phase is the service
demand at Client Processor required before the client task makes its rendezvous request.
The second phase is the service demand required by the client task after its rendezvous is
completed but before it returns to the client-task delay server.

The traffic tasks of both Server Processor and Client Processor will have only one
service phase.

14



INPUT AND OUTPUT DATA FOR THE CLOSED MODEL

The input data are defined as follows:

1. The number of traffic tasks at Server Processor is NTraffic Task, Server Processor. The
time spent in their delay server is exponentially distributed with average value
ZTraffic Task, Server Processor'

2. The number of traffic tasks at Client Processor is NTraffic Task. Client Processor. The
time spent in their delay server is exponentially distributed with average value
ZTraffic Task, Client Processor.

3. The number of client tasks is Nctient Task. The time spent in their delay server is
exponentially distributed with average value ZClient Task'

4. The first service phase for the SERVERTASK is exponentially distributed with
average service demand DlSERVERTASK.

5. The second service phase for the SERVERTASK is exponentially distributed
with average service demand D 2 SERVERTASK.

6. The third service phase for the SERVERTASK is exponentially distributed
with average service demand D 3 SERVERTASK.

7. The first service phase for the client tasks is exponentially distributed with
average service demand D1CLIENTTASK.

8. The second service phase for the client tasks is exponentially distributed with
average service demand D 2 CLENTTASK.

9. The service demand for the traffic tasks of Server Processor is exponentially
distributed with average service demand DTraffic Task, Server Processor'

10. The service demand for the traffic tasks of Client Processor is exponentially
distributed with average service demand DTraffic Task, Client Processor-

Using these input values, an algorithm will be developed for determining Rendezvous
Response Time for the client tasks.

MODEL ANALYSIS AND ALGORITHM DERIVATION

As before, certain homogeneity assumptions are not met in our closed model. Our
approach is to use MVA and extensions to develop an algorithm much like the algorithm
developed for the open model. The idea is to view SERVERTASK as a software server
connected to Client Processor. The service rate of this server will be adjusted to reflect the
contention that the actual SERVERTASK must deal with at Server Processor.
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Figure 10 is a conceptualization of the algorithm. In Network 1, SERVERTASK
competes with the traffic tasks of Server Processor. Each time SERVERTASK gains

access to the processor, SERVERTASK completes all three of its service phases. After

completion, SERVERTASK will either requeue at the processor or return to its delay

server and wait for the next rendezvous request to arrive.

. 0
0 Traffic Tasks

Delay Server
Traffic Tasks
Delay Server

0-
Client Tasks

0 Delay Server

SERVER TASK
Delay Server

Client Processor

Server Processor Software Server

Nek Netork2

Figure 10. A conceptualization of the algorithm.

The SERVERTASK software server of Network 2 represents SERVERTASK found
in Network 1. The residence time of a client task at this server will be Rendezvous

Response Time. Each of the client tasks first visit Client Processor, then the software
server then back to Client Processor before returning to the its delay server.

In the algorithm, we will iteratively solve Networks 1 and 2. For each iteration, the

output of one network will become the input for the other.
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1. Solve Network 2 for the following two values with the service demand at the
SERVERTASK software server equal to D 2 SERVERTASK"

a. Rclient Task, Software Server =  Residence time for the client tasks at the
SERVERTASK software server.

b. UClient Task, Software Server =  Utilization of the software server by the client
tasks.

2. Using the values from the previous step, define in Network 1, the delay time of

the SERVERTASK in its delay server, ZSERVERTASK , as

ZSERVER_TASK = RClient Task, Software Server - RClient Task, Software Server
Uctient Task, Software Server

3. Solve Network 1 for UTraffic Task, Server Processor where this value is defined as the
utilization of Server Processor by its traffic tasks.

4. Define the new service demand for the SERVERTASK software server of Net-
work 2, D2 'SERVERTASK, to be

D2 SERVER TASK

1 - UTraffic Task, Server Processor

5. Solve Network 2 for Rclient Task, Software Server and UClient Task, Software Server and

return to Step (2).

6. Iterate until Rclient Task, Software Server converges to a value. This value is Ren-

dezvous Response Time of the client tasks. From Lazowska et al. (1984), exact
MVA will be used to complete steps 1, 3, and 5.

COMPUTER SIMULATION AND ALGORITHM RESULTS

Table 3 is a table comparing algorithm predictions to computer simulation results

using the following input data.

1. ZTraffic Task, Server Processor = 50.0

2. ZTraffic Task, Client Processor = 50.0

3. Zclient Task = 50.0

4. DTraffic Task. Server Processor = 1 "0

5. DTraffic Task, Client Processor = 1.0

17



6. DlSERVERTASK = 0.5

7. D 2 SERVERTASK = 0.5

8. D 3 SERVERTASK = 0.0

9. DlCLIENT-TASK = 1.0

10. D 2 CLIENT-TASK = 0.0

11. N = NTRAFFIC TASK, SERVER PROCESSOR = NTRAFFIC TASK, CLIENT PROCESSOR =

NTRAFFIC TASK, CLIENT PROCESSOR = NCLIENT TASK

Table 3. Results with input values as defined above.

Simula- Relative
N Userver_Processor (%) UClientProcessor (%) Analysis tion Error (%)

5 19 19 1.231 1.21 0.00

10 35 38 1.56 1.52 3.85

15 55 56 2.17 2.33 7.37

20 62 73 3.39 4.16 22.71

25 88 85 6.37 8.13 27.63

30 86 93 14.98 17.07 13.95

The values Userver Processor and UCaient Processor are analytically obtained total utilities at
the processors. Figure 11 is a graph comparisons of the results and figure 12 is a graph of
the relative errors.

Table 4 shows the results for the algorithm by using the same input data except with
DSERVER TASK and D 2 SERVERTASK set equal to I and DCL1ENTTASK set equal to 2.
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Figure 11. A graph comparison of results from table 3.
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Figure 12. A graph of relative errors from table 3.
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Table 4. Results with input values as defined above.

Simula- Relative
N Use-ver Processor N% UClient Processor N% Analysis tion Error (%)

4 21 23 2.45 2.42 1.22

8 38 43 3.29 3.12 5.17

12 53 63 4.79 4.54 5.22

16 66 78 7.79 7.60 2.44

20 79 88 14.13 14.37 1.70

24 94 92 26.98 26.94 0.15

30

Simuilion 0

E Analysis 4-
F- 20

a)
cc

0

C10
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Figure 13. A graph comparison of results from table 4.
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Figure 14. A graph of relative errors from table 4.

DISCUSSION OF RESULTS

An examination of the results showed that relative error remained low in most cases
even if the utilizations at Server and Client Processors were near 100%. The simulated
data appear to increase at a steady pace as utilities are increased.

The algorithm to the closed model is much more computationally intense and requires
more input data than the algorithm for the open model. In the case of the closed model, a
computer would be needed to obtain analytic values. However, the relative errors for the
closed model appear to remain small even at very high-processor utilities.

In steps 1, 3, and 5, exact MVA was used to solve the closed network. This method
did not take into account the fact that both the Server and Client Processors act like
two-stage parallel Erlangian servers. Thus, exact MVA will only approximate the solution
to the network. An error term will be incorporated into the predicted Rendezvous
Response Time value for each time we iterate through the algorithm. In the future, other
methods for completing steps 1, 3, and 5 will be used to determine if this improves
Rendezvous Response Time predictions.
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FUTURE WORK

In this section, several different client-server rendezvous situations are presented.
Proposed solutions will be based on the work presented above. Testing of their validity
will be done as future work for this project. For simplicity, only the open model case will
be considered.

TWO RENDEZVOUS SERVERS AT SERVER PROCESSOR

Suppose two different server tasks run on Server Processor, say SERVERTASK_1
and SERVER TASK_2. We let client tasks (Type 1) and client tasks (Type 2) request
rendezvous from SERVERTASK 1 and SERVERTASK_2, respectively. Define the
following notation.

1. AR(Type 1) = Arrival Rate for Client Tasks (Type 1) to Client Processor.

2. A R(Type 2) = Arrival Rate for Client Tasks (Type 2) to Client Processor.

3. ZH = Arrival Rate for Traffic Tasks to Server Processor.

4. D R (Type 1) Service Demand for SERVERTASK I (i.e., the
RENDEZVOUS TIME Between SERVERTASK_1 and Client
Task (Type 1)).

5. DR(Type 2) Service Demand for SERVERTASK 2 (i.e., the
RENDEZVOUS TIME Between SERVERTASK_1 and Client
Task (Type 2)).

6. DH = Service Demand for Traffic Tasks of Server Processor.

Server Processor is separated into three parallel service facilities. Facility 1 will
process the rendezvous requests of Client Tasks (Type 1), Facility 2 will process the
rendezvous requests of Client Tasks (Type 2), and Facility 3 will process the traffic tasks

(figure 15).

Rendezvous Requests

Traffic Tasks

Figure 15. Server Processor separated into three parallel facilities.
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Inflate the service demands,

D'R(Type 1) = DR(Type 1)/(1 - )HDH)

D'R(Type 2) = DR(Type 2)/(1 -ZHDH)

and use these new values along with DH to define the service demands at Facilities 1, 2,
and 3, respectively, for the customers that they must service.

Solve for the residence times of the two rendezvous requests classes. This will be used
to predict Rendezvous Response Times for the client tasks (Type 1) and client tasks
(Type 2).

SERVERT,_SK WITH TWO ENTRIES IN SERIES

Suppose SERVERTASK has two points of entry in series. SERVERTASK has the
form

task body SERVER-TASK is
begin

loop

accept Entry-One (...) do

end Entry One;

accept EntryTwo (...) do

end EntryTwo;

end loop;

end SERVERTASK.

SERVERTASK will hold two entry queues; one for Entry_Onc, and the other for
Entry_Two. SERVERTASK will execute a rendezvous with requests from each queue in
an alternating manner. Each time SERVERTASK gains control of Server Processor, it
will first complete one rendezvous with a request from the EntryOne entry queue, and
then complete one rendezvous with a request from the EntryTwo entry queue. If there
are no requests at the EntryTwo entry queue, SERVERTASK will release Server
Processor and requeue for access when a request does enter the Entry_Two entry queue.
At Client Processor, the client tasks (Type 1) and the client tasks (Type 2) will make their
rendezvous requests to the EntryOne and EntryTwo entries, respectively.
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Define the following notation:

1. #AR(Type 1) Arrival Rate for Client Tasks (Type 1) t'- Client Processor.

2. 4R(Type 2) = Arrival Rate for Client Tasks (Type 2) to Client Processor.

3. n = Arrival Rate for Traffic Tasks to Server Processor.

4. DR(Type 1) = Service Demand for SERVERTASK to Complete One
Rendezvous Request from the Entry_One Entry Queue.

5. DR (Type 2) = Service Demand for SERVERTASK to Complete One
Rendezvous Request from the Entry-Two Entry Queue.

6. DH = Service Demand for Traffic Tasks of Server Processor.

We assume that 2 R(Type 2) !5 2 R(Type 2). Server Processor is separated into three parallel
service facilities as in figure 15. Facility 1 will process the rendezvous requests of Client
Tasks (Type 1), Facility 2 will process the rendezvLus requests of Client Tasks (Type 2),
and Facility 3 will process the traffic tasks.

Inflate the service demands

D'R(Type 1) = DR(Type 1)/(1 -A qDH)

D'R(Type 2) = DR(Type 2)/(1 -LHDH)

but in addition, we inflate again

D'R(Type 1) = D'R(Type 1)/(1 - [R(Typ, 1) - 2 R(Typ, 2)]DR(Type 2))

to take into account that requests queued at the EntryOne entry must wait an additional
amount of time since SERVERTASK is forced to service an equal number of requests at
both entries. This value is used along with D'R(Type 2) and DH to define the service
demands for the customers at Facilities 1, 2, and 3, respectively.

Solve for the residence times of the two rendezvous requests classes. This will be used
to predict Rendezvous Response Times for the client tasks (Type 1) and the client tasks
(Type 2).

SERVERTASK WITH A RENDEZVOUS WITHIN A RENDEZVOUS

Suppose SERVERTASK rendezvous with a task while in rendezvous with another
task, i.e., it has the form
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task body SE7 "ERTASK is
begin

loop

accept EntryOne (...) do

accept Entry-Two (...) do

end EntryTwo;

end EntryOne;

end loop;
end SERVERTASK;

This case breaks down into Example B since execution of the code between "end

EntryTwo;" and "end Entry One;" will be done immediately after the EntryTwo

rendezvous is completed.

CONCLUSION

Two sets of algorithms are proposed that solve open and closed rendezvous networks.
For the open model, the solution is simple and requires only four input parameters.

Therefore, quick, direct solutions are allowed. The closed-model solution is more involved

but the techniques are still simple. Future work will extend these techniques to more
complex rendezvous situations.
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